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Abstract-The paper starts with a discussion of a number of published boundary value problems in structural
mechanics, whose intuitive formulation led to incorrect boundary or matching conditions. It is then shown on
three examples, using variational methods, how to obtain well posed formulations for problems of this type.
For uniformity of presentation, all examples deal with continuously supported beams. The first two examples
exhibit boundary and matching points whose position is fixed along the beam axis. In the third example it is
shown how to use the method of variational calculus for a variable end point to formulate structural problems
with variable matching points. This is demonstrated on the problem of a beam which rests on, but is not
attached to, a Pasternak base; thus where parts of the beam may lift off the base. Each example concludes
with a comparison and discussion of related formulations published in the literature.

INTRODUCTION

Problems in structural mechanics which involve beams, plates, and shells are usually formulated
in terms of differential equations, boundary conditions, and initial conditions.§

In one approach, the DE's for a problem under consideration are derived by setting up
equations of motion, or equilibrium, on an infinitesimal element of the body and then by
performing the limit of shrinking the size of the element to a point. The corresponding BC's are
stated so as to satisfy the apparent geometrical and mechanical conditions at the boundaries.

In connection with this approach a number of questions arise. One question is whether a
stated set of BC's, which reflects the investigator's view of the conditions at the boundary, is
correct mechanicallY. This leads to another related question whether the resulting formulation is
mathematically well posed, (i.e. whether the formulation is mathematically consistent).

For standard problems, such as beams or plates simply supported or fixed along the boundary,
the formulation of the corresponding BC's is simple. It leads, mechanically and mathematicallY,
to well posed problems.

For some other structural problems this intuitive approach may encounter difficulties. An
early well-known example of such a situation is the difficulty encountered by Poisson [1), when
formulating the BC's along a free edge for the bending theory of thin plates. Based on his
knowledge of the theory of elasticity and his view of the mechanical conditions at the free
boundary, Poisson prescribed three conditions at each point of the boundary, whereas the fourth
order elliptic partial differential equation can accept only two conditions.

Other examples, of more recent origin, occurred when formulating the Be's for a "free" edge
of continuously supported structures. For beams, plates, and shells on a Winkler base, the BC's
are not affected by the base. However, when other foundation models are used (for example
those by Wieghardt, Pasternak, etc.), because of the simplifying assumptions made, concentrated
reaction forces may occur along the free edges and they have to be included in the formulation of
the BC's. The respective difficulties encountered by Wieghardt[2) and Pflanz[3] were pointed out
and clarified by Kerr [4]. Errors of the same type committed more recently by other investigators
(for example, Ref. [5]) will be discussed later.

Another class of problems for which the intuitive approach may lead to difficulties, is the
formulation of the matching conditions between two regions that are governed by different DE's.

tResearch supported by the Air Force Office of Scientific Research, Arlington, Virginia under Grant No. AFOSR F44620­
74-C-0037, and the Army Research Office, Durham, North Carolina under Grant No. DA-ARO-D-31-124-73-Gl90.

fVisiting Professor.
§In the following, for the sake of brevity and easier identification, a differential equation is denoted by DE and a boundary

condition by Be.
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The difficulties are compounded when the matching point, or line, is not fixed in space. An early
example which exhibits these difficulties, is the analytical formulation for the determination of
the buckling pressure of a spherical shell by Friedrichs [6]. An inconsistency in this formulation
was pointed out by Mushtari and Galimov [7]. Other problems of this type published recently are
the lift off problems of beams or plates from a continuous base (an example is shown in Fig. 4).

A second approach for formulating the differential equations and boundary conditions for
problems in structural mechanics, utilizes a variational principle and the methods of variational
calculus. For problems with fixed boundaries, this method is well established and widely
used [8,9]. This approach has the great advantage that for a given energy functional it generates
the necessary DE's and a variety of admissible BC's from which a well posed formulation,
mechanically and mathematically, may be chosen. This approach was used by Kirchhoff [10] for
establishing the proper two BC's along the free edge of a thin plate. It was used since by others to
formulate a variety of problems in structural mechanics [8, 9].

The purpose of the present paper is two-fold. In the first part (Examples I and II) using the
variational approach, the proper boundary and matching conditions are derived for a number of
problems with fixed matching points, which were incorrectly formulated in recent publications
using the intuitive approach. It is then shown the cause of these errors and how to avoid them.

In the second part of the paper it is shown how to properly formulate structural problems with
variable matching points. Several years ago, the author conceived the idea of using the method of
variational calculus for variable end points to formulate structural problems with variable
boundaries or variable matching points. This method yields in addition to the DE's and Be's also
transversality conditions for locating the position of the variable matching points. At the
suggestion of this writer, EI-Bayoumy[ll] utilized this approach for the solution of a confined
ring problem. This method is presented in Example III. As part of this presentation it is shown
that two lift-off problems for continuously supported beams and plates recently analyzed by
Chernigovskaya [5] are incorrectly formulated.

EXAMPLE I: BEAM CONTINUOUSLY ATTACHED TO A PASTERNAK BASE

To study the formulation of proper matching conditions at a fixed boundary, consider a finite
beam attached to a two-dimensional Pasternak base as shown in Fig. 1. To simplify the
presentation it is assumed that the system is symmetrical with respect to the coordinate origin.
Denoting by

w,(x) the deflections in 0 ~ x ~ I and by
W2(X) the deflections in I ~ x ~ L,

the total potential energy of the system becomes

(1.1 )

where EI is the flexural rigidity of the beam, G is the parameter of the shear layer, and k is the
parameter of the spring layer.
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According to the principle of stationary total potential energy, 8IT = O. Performing the
variations and then integrating by parts we obtain

1 f'2811 = Jo [(ElwD"-(Gw;)'+kw,-q]8w,dx

l L P
+ , [-(Gw;)'+kw2]8w2dx -28w,(O)+[Elw78w;]~

- {[(ElwD' - Gw :]8w,}~ + [Gw~8w2]~ = o.

Noting that (because of the fundamental lemma)

(1.2)

(ElwD"-(Gw;)' +kw, = q

- (Gw;)' + kW2 = 0

and that because

w,(l) = W2(l)

the relation 8w,(l) = 8w2(l) holds, eqn (1.2) reduces to

O~x ~I

l~x~L
(1.3)

(1.4)

~8n = [Elw78w;]~+ {[(E/W7)' - Gw; -f]8wl~0

- {[(ElwD' - G( w; - w~»)8w,}x~, + [Gw~8w2)x~L = O.

Thus, the BC's at x = 0 are

w;(O) = 0

[(EIW'!)'-Gw;_E.] =0
2 X~O

the matching conditions at x = 1 are

w,(l) = W2(l)

w'!(l) = 0

[(Elw'!)' - G(w; - wmx~1 = 0

and the BC at x = L is either

w2(L) = 0

when base adheres to the rigid surrounding (or a prescribed non-zero constant), or

wHL)=O

(1.5)

(1.6)

(1.7)

(1.4)

(1.8)

(1.9)

(LlO)

(LlO')

Note that in BC (1.7) the second term vanishes because of BC (1.6).
For a mechanical interpretation of the obtained boundary and matching conditions it should

be noted that, as shown in [4], the shearing force in the Pasternak base is S (x) = Gw '(x) and that,
according to the bending theory, the shearing force in the beam is V(x) = - (Elw")'. This is
shown in Fig. 2.

Thus, condition (LlO') states that the shearing force at x = L, i.e. between the base and the
surrounding medium, is equal to zero. Also note that the second term in (1.9), which is due to a
discontinuity in slope of the shear layer at x = I, represents a concentrated reaction. This
concentrated reaction is an idealization which results from the simplifying assumptions made in
formulating the base response. It represents in reality a strong increase of the reaction
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Fig. 2.

distribution in a narrow region near the edge. Wieghardt[2], treating a similar problem, assumed
the occurence of concentrated reactions as physically impossible and so arrived at an
overdetermined formulation. For a discussion of this question refer to [4]. More recently
Chernigovskaya, analyzing a related problem, suggested ([5], p. 124) that the concentrated end
reactions may be neglected "because of the plasticity of the soil". This is not an admissible
practice, since the resulting formulation and solution will not satisfy vertical equilibrium.

EXAMPLE II: BEAM CONTINUOUSLY ATTACHED TO A "GENERALIZED BASE"

Another problem, closely related to the above, is the analysis of a continuously supported
beam in which the base response is represented by a spring layer and a continuous reaction
moment, as follows:

p(x) = k,w(x)

/-L(x) = k2 w'(x)
(2.1)

In Ref. [4] this foundation model is referred to as the "generalized" foundation. There (on p. 496)
it was shown that the resulting DE for a plate (or beam) attached to a "generalized" foundation is
the same as the one for the plate (or beam) attached to a Pasternak foundation, if G = k2 • This
observation suggests that the response of the "generalized" base and of the Pasternak base will
be similar.

To demonstrate some of the difficulties encountered when formulating intuitively beam or
plate problems attached to a "generalized" base consider, as an example, the beam problem
shown in Fig. 3(a). For this system, the total potential energy is

The corresponding formulation obtained from 1m = 0 is, noting eqn (1.2), the DE

(2.2)

O~x ~ I (2.3)

and the Be's

w"(O) = 0; w"(l) = 0

[(E/w"Y - k2W']x~O = 0; [(E/w"Y - k2W']x~1 = O.

(2.4)

(2.5)

Note that the second term in DE (2.3) and in BC (2.5) represent the contribution of the
distributed base reaction moment. Thus, the distributed base reaction moments also affect a BC
at the "free" end of a beam.

The continuous base reaction moments were recently introduced in the analyses for the
determination of buckling temperatures of a railroad track by Pershin[12], Engel [13], and
Prud'homme and Janin[14]. Assuming that the track buckles in the horizontal plane, the two rails
were represented by one beam of constant cross section, the lateral resistance of the ballast by a
spring layer (or Coulomb friction or a combination of both), and the torsional resistance of the
closely spaced fasteners by a continuously distributed reaction moment that is proportional to the
local angle of rotation [15]. Prud'homme and Janin included in their DE the term (- k2 W ") but
stated the BC's for a "free" end of the track, at x = I, ([14], p. 603) as
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w"(l) = 0; w"'(l) = o.
5

(2.6)

Comparing the second BC with those shown in (2.5), it follows that the second BC in (2.6) is not
correct. To obtain a mathematically consistent formulation the term (-k2 w') has to be added (as
well as the term due to the axial force if one exists).

For a physical interpretation of the term (k 2 w')' in the DE (2.3) and the term k2 w' in the BC
(2.5) consider a beam attached to a "generalized" foundation, as shown in Fig. 3(a). Obeying the
positive sign convention, the corresponding reaction pressure and reaction moment distributions
are shown in Fig. 3(b). Replacing the reaction moments by couples, as shown in Fig. 3(c), it
follows that the distribution of reaction moments is statically equivalent to a vertical force
distribution of intensity

which enters the DE and concentrated reactions at the free ends of magnitude k2 w' which enter
the BC's, as shown in Fig. 3(d).t

The foundation equations (2.1) were also used recently by Fletcher and Hermann [17] for the
determination of the response of a semi-infinite beam embedded in an elastic continuum. Since
for the analyzed problem the continuum extended beyond the free end of the beam, the
formulation of the BC's at this end point requires special attention. For example, one approach
could be based on the observed similarity of the "generalized" and Pasternak models, by
assuming that the effect of the continuum beyond the free end of the beam may be expressed by a
Pasternak base, as done in Example I. According to this approach, at the free end of the beam
there will exist a concentration reaction force, but not a concentrated reaction moment as
assumed in [17].

tThis argument is analogous to the one used by Lord Kelvin and P. G. Tait[16] to explain the physical meaning of a Be
for the free edge of a plate, originally derived by Kirchhoff[IO] by means of the variational approach.

___________l x-

(a)

Fig. 3.
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From the above discussion and derivations it appears that once the equations for the
foundation and beam response are chosen, from the point of view of mathematical consistency,
the concentrated reactions at a free end may not be prescribed arbitrarily. If they exist, they will
appear in the corresponding variational formulation, as shown above.

EXAMPLE Ill: BEAM RESTING ON A PASTERNAK BASE (WITH LIFT-OFF)

To study the formulation of the conditions at a variable matching point, consider the
beam-foundation problem analyzed in Example I, but assume that the beam is not attached to the
Pasternak foundation. To simplify the presentation it is also assumed here that the system is
symmetrical with respect to the origin.

Because the beam is not attached to the base, tensile stresses cannot occur between beam and
base and therefore the beam may lift off the base over certain intervals, as shown in Fig. 4. The
coordinate of the matching point, x = a, is not known a priori. It depends upon the mechanical
and geometrical parameters of the problem. Thus, in addition to the usual boundary and matching
conditions (that would be required for x = a fixed) an equation is needed for the determination of
the unknown a.

x

L

Fig. 4.

L

In the following, this additional equation is derived by utilizing the method of variational
calculus for variable end points [l8]. This method yields, in addition to the DE's and Be's, also a
transversality condition at x = a, which is the needed equation. Denoting by

WI (x) the deflections of beam and base in 0;::2 x ;::2 a
W2(X) the deflections of beam in the lift off region a ;::2 x ;::2 I
ws(x) the deflections of the base surface in a;::2 X;::2 L

the total potential energy of the system may be written as

IT = f F,[w,(x), w\(x), w':(x)] dx +LF 2[wb), w~(x)] dx

+ LL F,[ws(x),w~(x)]dx-Pwl(O)

where

To derive the first variation, aIT, we form the difference

(3.1)

(3.2)
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{
ra+Ba La}

.:ill = Jo F1[wl + i)Wt, w; + i)w;, w't + i)wl] dx - 0 F,[wt, w;, w'{] dx

+{J' F2[W2 + i)W2, w~ + i)w~] dx - JI F2[W2, w~] dX}
a+8a a

+ {J L Fs [w, + i)ws, W~ + i)w~] dx - JL F, [Ws, w~] dX}
a+8a a

7

(3.3)- P{ WI(O) + i)WI(O) - WI(O)}.

Noting that the above expression may be rewritten as

.:ill = {f Ft[wt + i)wt, ...] dx - f Ft[wt, ] dX} +f+Ba Ft[wt, ] dx

+{f F2[W2 + i)W2, .•.Jdx - f F2[W2, ] dX} - f+Ba F2[W2, Jdx

+ {LL Fs[ws+ i)ws, ...Jdx - LL Fs[ws,. ooJ dX} - f+Ba Fs[w" 00'] dx

- Pi)Wt(O) (3.4)

it follows, using the mean value theorem on the integrals with the limits from a to a + i)a, that

all = af F1[wt, w;, wl] dx + Ft[wJ, w;, w~]lx~aaa

+ i)f F2[W2, w~J dx - F2[W2, wnlx~ai)a

+ i) LL Fs[w" w~] dx - F,[ws, w~]lpaaa - PSWI(O). (3.5)

The second term in each row of eqn (3.5) is due to the fact that the matching point at x = a is not
fixed along the x axis.

The equilibrium equations, i.e. the formulation, is obtained from the condition

SIl=O. (3.6)

Performing the indicated variations in (3.5) and the usual integrations by parts, then noting the
geometrical matching conditions at x = a

wl(a) = w2(a) = ws(a)~ i)wt(a) = i)w2(a) = i)ws(a) }

w;(a) = w;(a) ~ i)w;(a) = i)w;(a)

and the fact that for the problem under consideration the Euler equations

aFI_(aF,) + (oF,)" =0 O~x~a
aWt ow; ow~

oFs_(oFs)' =0 a~x~L
aws aw~

have to be satisfied, condition (3.6) reduces to

(3.7)

(3.8)
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{( aF2)' } {aPs }- -a" 8W2 + -a,8w, =0.
W2 x=l w.~ x=L

(3.9)

Noting that according to Fig. 5

and that

8wnx~a = 8w~- wHa)8a

eqn (3.9) may be rewritten as follows:

+{F -F -F _[aFI_(aFI)' +(aF2)'_aF,] 1_(aFI_aF2),,} 8
I 2 , a I a" a" a I WI a" a " WI aWI WI W2 W" WI W2 x~a

+{aFI_ (aFI)' + (aF2)' _ aPs} " + {aFI _ aF2) ",
, " " , uWa " " UW aaWl aWl aW2 aw" x~a aWl aW2 x~a

{aF2 1} {(aF2)' } {aF, }+ -a,,8W2 - -a" 8W2 + -,8w, =0.W2 x~1 W2 x~l aw s x~L

(3.10)

(3.10')

(3. II)

Since all the variations which appear in the above equation are independent, it follows that the
Be's at x = 0 are

W;(O) = 0

the matching conditions at x = a are

wI(a) = wia)
wI(a) = w,(a)
w\(a) = w2(a)

and

[aFl_aF2] =0
aw~ aW~ Fa

[aFI _ (aF,)' + (aF2)' _ aF,] = 0
aw; aw'; aw~ aw~ x~a

a a+8a

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

z wf' (a)8a +0 (8a2)
~;"'w; (a)

Fig. 5.
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[FI - F2 - Fs]x ~a = 0 (transversality condition)

the BC's at x = I are

[ OF2] =0
ow~ x~1

[( OF2)'] =0
OW~ x~l

and the BC at x = L is

Ws(L)=O or [~F:] =0.
UW s x=L

9

(3.19)

(3.20)

(3.21)

(3.22)

The conditions (3.12)-(3.22) are the eleven equations needed for the determination of the ten
integration constants of the three DE's in (3.8) and the unknown a.

For the specific problem under consideration, the Euler equations in (3.8) become, noting the
relations in (3.2),

(Elwn"- (Gw;)' +kWI = q

(Elw;)" = q

(Gw~)' - kws = 0

the BC's at x = 0 become

w;(a)=O

[- (Elwn']x~o= f
the matching conditions at x = a are

wl(a) = w2(a)

wl(a) = ws(a)

w;(a) = wHa)

and

(3.8')

(3.12')

(3.13')

(3.14)

(3.15)

(3.16)

w'[(a) = w~(a)

[- (Elw'[)' + (Elw~)' + G(w~ - W~)]x=a = 0

w;(a) = w~(a)

the BC's at x = I are

ww)=O

[(Elw;)'lx~l = 0

and the BC at x = L is

ws(L)=O or w~(L)=O.

(3.17')

(3.18')

(3.19')

(3.20')

(3.21')

(3.22')

It is of interest to note that according to matching condition (3.19'), which is the transversality
condition, the slope of the shear layer at point x = a is continuous, unlike at x = I of Example I
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where the slope is discontinuous. Note that due to eqn (3.19') the third term in condition (3.18')
vanishes. Thus, at the separation point of beam and shear layer there is no concentrated reaction
force.

The above problem (Fig. 4) for q = qo = const. was recently analyzed by Chernigovskaya,
who formulated the problem intuitively. Instead of the matching conditions (3.17')-(3.19'),
Cheringovskaya used ([5], p. 124)

_ Elw':(a) = _ qo(l- a)'
2

- EIw'i'(a) = qo(l- a)

- Gw':(a) + kw,(a) = O.

(3.23)

(3.24)

(3.25)

Condition (3.23) which represents moment equilibrium at x = a, is equivalent to eqn (3.17').
Condition (3.24) is equivalent to eqn (3.18'), since the third term in (3.18') is equal to zero. Note,
however, that Chernigkovskaya's footnote (p. 124) stating that the formally exact condition
would have to include a concentrated reaction force at x = a is not correct since, as shown
above, at the point of separation of beam and shear layer a concentrated reaction force does not
exist. The third condition, (3.25), is not correct. It states that the distributed reaction pressure at
x = a is equal to zero. The correct equation is the transversality condition (3.19') which states
that at x = a the slope of the shear layer is continuous.

The same comments apply to Chernigovskaya's formulation of a circular plate on a Pasternak
base ([5], p. 135).

CONCLUSIONS

On three examples it is shown how to properly formulate problems in structural mechanics
for which the intuitive approach led to incorrect formulations of boundary and matching
conditions. The presented derivations are based on the principle of stationary total potential
energy and the methods of variational calculus for variable end points.

The obtained results show that: (1) at the "free" end of a beam which is continuously
attached to a Pasternak or "generalized" base, there usually exists a concentrated reaction force
that enters the BC's. It should be noted that this is also valid when the Pasternak foundation does
not extend beyond the beam end, and (2) for the beam which onlyrests on a Pasternak foundation
(and thus can lift off the base over certain intervals), at the separation point of beam and base the
slope of the shear layer is continuous and thus there is no concentrated reaction force.

In conclusion, the great utility of the method of variational calculus for variable matching points
should be pointed out for the formulation of matching conditions of adjoining regions that are
governed by different differential equations.
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